Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.719
1.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713624

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
2.
Acta Neuropathol Commun ; 12(1): 70, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698465

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


COVID-19 , Microglia , Olfactory Bulb , Humans , COVID-19/pathology , COVID-19/complications , Olfactory Bulb/pathology , Olfactory Bulb/metabolism , Aged , Male , Female , Aged, 80 and over , Middle Aged , Microglia/pathology , Microglia/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , SARS-CoV-2 , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism
3.
J Comp Neurol ; 532(3): e25599, 2024 03.
Article En | MEDLINE | ID: mdl-38488687

During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.


Kallmann Syndrome , Humans , Animals , Mice , Kallmann Syndrome/genetics , Kallmann Syndrome/metabolism , Neurons/metabolism , Gonadotropin-Releasing Hormone/metabolism , Brain/metabolism , Axons/metabolism , Olfactory Bulb/metabolism , Cell Movement/physiology
4.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Article En | MEDLINE | ID: mdl-38439531

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Olfactory Receptor Neurons , S100 Proteins , Vomeronasal Organ , Animals , Olfactory Bulb/metabolism , Olfactory Mucosa , Olfactory Receptor Neurons/metabolism , S100 Proteins/metabolism , Vomeronasal Organ/metabolism , Xenopus laevis/metabolism
5.
Environ Sci Technol ; 58(11): 4914-4925, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38436231

Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aß deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.


Neuroinflammatory Diseases , Olfactory Bulb , Mice , Animals , Olfactory Bulb/metabolism , Particulate Matter/toxicity , Signal Transduction , Receptors, Chemokine/metabolism , NF-kappa B/metabolism , NF-kappa B/pharmacology
6.
J Physiol Sci ; 74(1): 18, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491428

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4ß2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4ß2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4ß2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.


Neocortex , Receptors, Nicotinic , Rats , Animals , Nicotine/pharmacology , Olfactory Bulb/metabolism , Receptors, Nicotinic/metabolism , Cholinergic Agents , Neocortex/metabolism
7.
Brain Res ; 1833: 148885, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38531465

BACKGROUND: Immune-inflammatory response is a key element in the occurrence and development of olfactory dysfunction (OD) in patients with allergic rhinitis (AR). As one of the core factors in immune-inflammatory responses, interleukin (IL)-6 is closely related to the pathogenesis of allergic diseases. It may also play an important role in OD induced by diseases, such as Sjögren's syndrome and coronavirus disease 2019. However, there is no study has reported its role in OD in AR. Thus, this study aimed to investigate the role of IL-6 in AR-related OD, in an attempt to discover a new target for the prevention and treatment of OD in patients with AR. METHODS: Differential expression analysis was performed using the public datasets GSE52804 and GSE140454 for AR, and differentially expressed genes (DEGs) were obtained by obtaining the intersection points between these two datasets. IL-6, a common differential factor, was obtained by intersecting the DEGs with the General Olfactory Sensitivity Database (GOSdb) again. A model of AR mice with OD was developed by sensitizing with ovalbumin (OVA) to verify the reliability of IL-6 as a key factor of OD in AR and explore the potential mechanisms. Furthermore, a supernatant and microglia co-culture model of nasal mucosa epithelial cells stimulated by the allergen house dust mite extract Derp1 was established to identify the cellular and molecular mechanisms of IL-6-mediated OD in AR. RESULTS: The level of IL-6 in the nasal mucosa and olfactory bulb of AR mice with OD significantly increased and showed a positive correlation with the expression of olfactory bulb microglia marker Iba-1 and the severity of OD. In-vitro experiments showed that the level of IL-6 significantly increased in the supernatant after the nasal mucosa epithelial cells were stimulated by Derp1, along with significantly decreased barrier function of the nasal mucosa. The expression levels of neuroinflammatory markers IL-1ß and INOS increased after a conditioned culture of microglia with the supernatant including IL-6. Then knockdown (KD) of IL-6R by small interfering RNA (siRNA), the expression of IL-1ß and INOS significantly diminished. CONCLUSION: IL-6 plays a key role in the occurrence and development of OD in AR, which may be related to its effect on olfactory bulb microglia-mediated neuroinflammation.


Disease Models, Animal , Interleukin-6 , Olfaction Disorders , Rhinitis, Allergic , Animals , Mice , Interleukin-6/metabolism , Microglia/metabolism , Olfaction Disorders/metabolism , Olfactory Bulb/metabolism , Ovalbumin , Rhinitis, Allergic/metabolism , Male , Mice, Inbred C57BL
8.
J Neuroimmunol ; 387: 578288, 2024 02 15.
Article En | MEDLINE | ID: mdl-38237527

We examined the histopathological changes in the olfactory mucosa of cynomolgus and rhesus macaque models of SARS-CoV-2 infection. SARS-CoV-2 infection induced severe inflammatory changes in the olfactory mucosa. A major histocompatibility complex (MHC) class II molecule, HLA-DR was expressed in macrophage and supporting cells, and melanocytes were increased in olfactory mucosa. Supporting cells and olfactory neurons were infected, and SARS-CoV-2 N protein was detected in the axons of olfactory neurons and in olfactory bulbs. Viral RNA was detected in olfactory bulbs and brain tissues. The olfactory epithelium-olfactory bulb pathway may be important as a route for intracranial infection by SARS-CoV-2.


COVID-19 , Olfactory Bulb , Animals , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , SARS-CoV-2 , COVID-19/pathology , Macaca mulatta , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Inflammation/metabolism , Macaca fascicularis
9.
Brain Res ; 1824: 148676, 2024 02 01.
Article En | MEDLINE | ID: mdl-37956747

The olfactory bulbectomy (OBX) animal model of depression reproduces the behavioral and neurochemical changes observed in depressed patients. We assessed the therapeutic effects of the Jieyu Chufan (JYCF) capsule on OBX rats. JYCF ameliorated the hedonic and anxiety-like behavior of OBX rats and attenuated the cortical and hippocampal damage. JYCF enhanced the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and adiponectin (ADPN) in the cortex and hippocampus of OBX rats. JYCF also reduced cortisol levels and restored the levels of excitatory neurotransmitters, such as 5-hydroxytryptamine (5-HT), acetylcholine (ACH), and glutamic acid (Glu), in the brain tissue of OBX rats. Our results suggest that JYCF preserves the synaptic structure by increasing the levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) and alleviates the histological alterations of brain tissue by activating AKT/PKA-CREB-BDNF pathways, and by upregulating ADPN and FGF2 expression in OBX rats. JYCF exerts multiple therapeutic effects on depression, including modulating neurotransmitters, repairing neuronal damage, and maintaining synaptic integrity. These findings support the potential of JYCF as a novel antidepressant agent with therapeutic effects on depression and related neurological disorders.


Brain-Derived Neurotrophic Factor , Depression , Humans , Rats , Animals , Depression/drug therapy , Depression/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Fibroblast Growth Factor 2/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Neurotransmitter Agents/metabolism , Olfactory Bulb/metabolism , Disease Models, Animal
10.
Mol Cell Neurosci ; 128: 103913, 2024 Mar.
Article En | MEDLINE | ID: mdl-38056728

Fibroblast growth factors (FGFs) and bone morphogenic proteins (BMPs) play various important roles in the development of the central nervous system. However, the roles of FGF and BMP signaling in the development of the olfactory bulb (OB) are largely unknown. In this study, we first showed the expression of FGF receptors (FGFRs) and BMP receptors (BMPRs) in OB RGCs, radial glial cells (RGCs) in the developing OB, which generate the OB projection neurons, mitral and tufted cells. When the FGF signaling was inhibited by a dominant-negative form of FGFR1 (dnFGFR1), OB RGCs accelerated their state transition to mitral cell precursors without affecting their transcription cascade and fate. However, the mitral cell precursors could not radially migrate to form the mitral cell layer (MCL). In addition, FGF signaling inhibition reduced the expression of a BMP antagonist, Noggin, in the developing OB. When BMP signaling was suppressed by the ectopic expression of Noggin or a dominant-negative form of BMPR1a (dnBMPR1a) in the developing OB, the defect in MCL formation caused by the dnFGFR1 was rescued. However, the dnBMPR1a did not rescue the accelerated state transition of OB RGCs. These results demonstrate that FGF signaling is important for OB RGCs to maintain their self-renewal state and MCL formation. Moreover, the suppression of BMP signaling is required for mitral cells to form the MCL. This study sheds new light on the roles of FGFs and BMPs in OB development.


Bone Morphogenetic Proteins , Olfactory Bulb , Mice , Animals , Olfactory Bulb/metabolism , Cell Differentiation , Bone Morphogenetic Proteins/metabolism , Signal Transduction , Fibroblast Growth Factors
11.
Brain Res ; 1825: 148732, 2024 02 15.
Article En | MEDLINE | ID: mdl-38104922

Trigeminal neuralgia (TN) is a common form of facial pain, which primarily manifests as severe pain similar to facial acupuncture and electric shock. Olfactory ensheathing cells (OECs) are glial cells with high bioactivity; these cells are essential for the periodic regeneration of the olfactory nerve and have been utilized for the repair of nerve injuries. A member of the P2X receptor family, P2X7R, is an ion channel type receptor that has been confirmed to participate in various pain response processes. In this study, we transplanted OECs into trigeminal nerve-model rats with distal infraorbital nerve ligation to observe the therapeutic effect of transplanted OECs in rats. Additionally, we utilized the P2X7R-specific inhibitor brilliant blue G (BBG) to study the therapeutic mechanisms of cell transplantation. The facial mechanical pain threshold of these rats significantly increased following cell transplantation. The immunohistochemistry, immunoblotting, and RT-qPCR results demonstrated that the levels of P2X7R, (NOD)-like receptor protein-3 (NLRP3), nuclear factor-κB (NF-κB), interleukin (IL)-1ß, and IL-18 in the trigeminal ganglion of rats treated with OEC transplantation or BBG treatment were significantly lower than those in the injured group without treatment. Overall, our results demonstrate that OEC transplantation can alleviate TN in rats, and it can reduce the expression of P2X7R related inflammatory factors in TN rats, reducing neuroinflammatory response in TG.


Trigeminal Neuralgia , Rats , Animals , Trigeminal Neuralgia/drug therapy , Trigeminal Neuralgia/metabolism , Rats, Sprague-Dawley , Facial Pain/metabolism , Pain Threshold/physiology , Cell Transplantation/methods , Olfactory Bulb/metabolism
12.
Front Immunol ; 14: 1273837, 2023.
Article En | MEDLINE | ID: mdl-38077336

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Astrocytes/metabolism , Olfactory Bulb/metabolism , Cyclic AMP/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Receptors, Purinergic P1/metabolism
13.
Science ; 382(6673): 958-963, 2023 11 24.
Article En | MEDLINE | ID: mdl-37995223

Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.


Interneurons , Lateral Ventricles , Maternal Behavior , Neurogenesis , Neuronal Plasticity , Olfactory Bulb , Pregnancy , Smell , Animals , Female , Mice , Pregnancy/physiology , Adult Stem Cells/physiology , Interneurons/cytology , Interneurons/physiology , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Neural Stem Cells/physiology , Neurogenesis/physiology , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Transcriptome , Maternal Behavior/physiology
14.
Environ Toxicol Pharmacol ; 104: 104316, 2023 Nov.
Article En | MEDLINE | ID: mdl-37981204

This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.


Air Pollutants , Air Pollution , Mice , Animals , Female , Olfactory Bulb/chemistry , Olfactory Bulb/metabolism , Air Pollutants/toxicity , Air Pollutants/analysis , Transcriptome , Mice, Inbred C57BL , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Gene Expression Profiling , Biomarkers/metabolism , RNA, Messenger/metabolism , Particle Size
15.
Stem Cell Reports ; 18(12): 2418-2433, 2023 12 12.
Article En | MEDLINE | ID: mdl-37995703

Although adult subependymal zone (SEZ) neural stem cells mostly generate GABAergic interneurons, a small progenitor population expresses the proneural gene Neurog2 and produces glutamatergic neurons. Here, we determined whether Neurog2 could respecify SEZ neural stem cells and their progeny toward a glutamatergic fate. Retrovirus-mediated expression of Neurog2 induced the glutamatergic lineage markers TBR2 and TBR1 in cultured SEZ progenitors, which differentiated into functional glutamatergic neurons. Likewise, Neurog2-transduced SEZ progenitors acquired glutamatergic neuron hallmarks in vivo. Intriguingly, they failed to migrate toward the olfactory bulb and instead differentiated within the SEZ or the adjacent striatum, where they received connections from local neurons, as indicated by rabies virus-mediated monosynaptic tracing. In contrast, lentivirus-mediated expression of Neurog2 failed to reprogram early SEZ neurons, which maintained GABAergic identity and migrated to the olfactory bulb. Our data show that NEUROG2 can program SEZ progenitors toward a glutamatergic identity but fails to reprogram their neuronal progeny.


Basic Helix-Loop-Helix Transcription Factors , Neural Stem Cells , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Neurons/metabolism , Neural Stem Cells/metabolism , Cell Differentiation , Olfactory Bulb/metabolism , Neurogenesis/physiology
16.
FASEB J ; 37(12): e23272, 2023 12.
Article En | MEDLINE | ID: mdl-37997495

Parkinson's disease (PD) is a progressive, neurodegenerative disorder with an increasing incidence, unknown etiology, and is currently incurable. Advances in understanding the pathological mechanisms at a molecular level have been slow, with little attention focused on the early prodromal phase of the disease. Consequently, the development of early-acting disease-modifying therapies has been hindered. The olfactory bulb (OB), the brain region responsible for initial processing of olfactory information, is particularly affected early in PD at both functional and molecular levels but there is little information on how the cells in this region are affected by disease. Organotypic and primary OB cultures were developed and characterized. These platforms were then used to assess the effects of 3,4-dihydroxyphenylacetylaldehyde (DOPAL), a metabolite of dopamine present in increased levels in post-mortem PD tissue and which is thought to contribute to PD pathogenesis. Our findings showed that DOPAL exposure can recapitulate many aspects of PD pathology. Oxidative stress, depolarization of mitochondrial membranes, and neurodegeneration were all induced by DOPAL addition, as were measured transcriptomic changes consistent with those reported in PD clinical studies. These olfactory models of prodromal disease lend credence to the catecholaldehyde hypothesis of PD and provide insight into the mechanisms by which the OB may be involved in disease progression.


Parkinson Disease , Humans , Parkinson Disease/metabolism , Olfactory Bulb/metabolism , Microphysiological Systems , Brain/metabolism , Dopamine/metabolism
17.
Tissue Cell ; 85: 102255, 2023 Dec.
Article En | MEDLINE | ID: mdl-37922676

The turtle olfactory organ consists of upper (UCE) and lower (LCE) chamber epithelium, which send axons to the ventral and dorsal portions of the olfactory bulbs, respectively. Generally, the UCE is associated with glands and contains ciliated olfactory receptor neurons (ORNs), while the LCE is devoid of glands and contains microvillous ORNs. However, the olfactory organ of the pig-nosed turtle Carettochelys insculpta appears to be a single olfactory system morphologically: there are no associated glands; ciliated ORNs are distributed throughout the olfactory organ; and the olfactory bulb is not divided into ventral and dorsal portions. In this study, we analyzed the expression of odorant receptors (ORs), the major olfactory receptors in turtles, in the pig-nosed turtle olfactory organ, via in situ hybridization. Of 690 ORs, 375 were classified as class I and 315 as class II. Some class II ORs were expressed predominantly in the posterior dorsomedial walls of the nasal cavity, while other class II ORs and all class I ORs examined were expressed in the remaining region. These results suggest that the pig-nosed turtle olfactory organ can be divided into two regions according to the expression of ORs.


Olfactory Receptor Neurons , Receptors, Odorant , Turtles , Animals , Swine , Turtles/genetics , Turtles/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Olfactory Receptor Neurons/metabolism , Olfactory Bulb/metabolism , In Situ Hybridization , Olfactory Mucosa
18.
J Alzheimers Dis ; 96(2): 563-578, 2023.
Article En | MEDLINE | ID: mdl-37840485

BACKGROUND: Assessments of Alzheimer's disease pathology do not routinely include lower brainstem, olfactory bulb, and spinal cord. OBJECTIVE: Test if amyloid-ß (Aß) and paired helical filament (PHF) tau-tangles outside the cerebrum are associated with the odds of dementia. METHODS: Autopsies were obtained in decedents with cognitive testing (n = 300). Aß plaques and PHF tau-tangles were assessed in 24 sites: cerebrum (n = 14), brainstem (n = 5), olfactory bulb, and four spinal cord levels. Since spinal Aß were absent in the first 165 cases, it was not assessed in the remaining cases. RESULTS: Age at death was 91 years old. About 90% had Aß in cerebrum and of these, half had Aß in the brainstem. Of the latter, 85% showed Aß in the olfactory bulb. All but one participant had tau-tangles in the cerebrum and 86% had brainstem tau-tangles. Of the latter, 80% had tau-tangles in olfactory bulb and 36% tau-tangles in one or more spinal cord levels. About 90% of adults with tau-tangles also had Aß in one or more regions. In a logistic model controlling for demographics, Aß and tau-tangles within the cerebrum, the presence of Aß in olfactory bulb [OR, 1.74(1.00, 3.05)]; tau-tangles in brainstem [OR, 4.00(1.1.57,10.21)]; and spinal cord [OR, 1.87 (1.21,3.11)] were independently associated with higher odds of dementia. CONCLUSION: Regional differences in Aß and tau-tangle accumulation extend beyond cerebrum to spinal cord and their presence outside the cerebrum are associated with a higher odds of dementia. Further studies are needed to clarify the extent, burden, and consequences of AD pathology outside of cerebrum.


Alzheimer Disease , Cerebrum , Humans , Aged, 80 and over , Alzheimer Disease/pathology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Olfactory Bulb/metabolism , Neuropsychological Tests , Cerebrum/metabolism , Neurofibrillary Tangles/pathology
19.
J Neurosci ; 43(48): 8243-8258, 2023 11 29.
Article En | MEDLINE | ID: mdl-37788940

Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders (ASDs) in humans. FXS is caused by loss of expression of the fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here, we conducted experiments in wild-type (WT) and Fmr1 knock-out (KO; Fmr1-/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation under baseline conditions, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of spontaneous LLDs (sLLDs), which appeared to be because of a decrease in GABAergic synaptic inhibition in glomeruli leading to more feedforward excitation, caused a reduction in the reliability of stimulation-evoked responses in MCs. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the Fmr1 KO-induced reduction in MC response reliability is one plausible mechanism for the impaired fine odor discrimination.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knock-out (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb, similar to what Fmr1 KO does in other brain circuits, but through a novel mechanism that involves enhanced feedforward excitation. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by changes in neural response reliability.


Fragile X Syndrome , Olfactory Bulb , Humans , Male , Animals , Mice , Olfactory Bulb/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Mice, Knockout , Odorants , Reproducibility of Results , Fragile X Mental Retardation Protein/metabolism , Disease Models, Animal
20.
Neuroimmunomodulation ; 30(1): 277-290, 2023.
Article En | MEDLINE | ID: mdl-37769638

INTRODUCTION: Rheumatoid arthritis (RA) can be comorbid with psychiatric symptoms. Brain abnormalities in RA patients and in arthritis models have been reported. However, it remains unclear when these abnormalities occur and where they are distributed. In this study, we analyzed spatiotemporal changes in gene expression in the brains of mice with collagen-induced arthritis (CIA). METHODS: Mice were divided into three groups: (i) CIA (all mice developed arthritis on day 35): complete Freund's adjuvant (CFA) and type II collagen at initial immunization, and incomplete Freund's adjuvant (IFA) and type II collagen at booster immunization; (ii) C(+/-) (50% mice developed arthritis on day 35): only IFA at booster immunization; and (iii) C(-/-) (no arthritis): only CFA at initial immunization and only IFA at booster immunization. Whole brains were collected at ten stages of arthritis and divided into six sections. Real-time polymerase chain reaction was performed using RNA extracted from the brain, and the expression of proinflammatory cytokines and glial markers was semi-quantified. Arthritis score, body weight, and food and water intakes were recorded and analyzed for correlations with brain gene expression. We also investigated the effect of interleukin-6 (IL-6) injection in the olfactory bulbs (OBs) on the food intake. RESULTS: After booster immunization, a transient increase in Integrin subunit α-M and IL-1ß was observed in multiple areas in CIA. IL-6 is persistently expressed in the OB before the onset of arthritis, which is correlated with body weight loss and decreased food intake. This change in the OB was observed in the C(+/-) but not in the C(-/-) groups. In the C(+/-) group, non-arthritic mice showed the same changes in the OB as the arthritic mice. This elevation in IL-6 levels persisted throughout the chronic phase until day 84. In addition, IL-6 injection into the OB reduced food intake. CONCLUSION: Persistent elevation of IL-6 in the OB from the early stage of arthritis may be an important finding that might explain the neuropsychiatric pathophysiology of RA, including appetite loss, which is present in the early stages of the disease and manifests as a variety of symptoms over time.


Arthritis, Experimental , Arthritis, Rheumatoid , Interleukin-6 , Olfactory Bulb , Animals , Mice , Collagen Type II/metabolism , Eating , Interleukin-6/metabolism , Olfactory Bulb/metabolism
...